

Introduction to Bio-inspiration and Lab-On-a-Chip system:

仿生與實驗室晶片導論 An-Bang Wang 王安邦

國立臺灣大學 應用力學研究所

Institute of Applied Mechanics, National Taiwan University

仿生與實驗室晶片導論

Edited By An-Bang Wang

What is Lab on a chip?

LOAC (or LOC): combining different operations, which are originally performed in laboratories, in a single microdevice. (Berthier & Silberzan)

(From: Caliper Technologies Corp., Mountain View, CA, USA)

NTU-IAM

精微熱流控制實驗室

What is Bio-inspiration?

- ◆ Bioinspiration is the development of new things inspired by observations/solutions in nature.
- ◆ Bioinspiration vs. biomimicry/biomimetics the latter aims to precisely replicate the designs of biological materials. Bioinspired research is a return to the classical origins of science: it is a field based on observing the remarkable functions that characterize living organisms, and trying to abstract and imitate those functions. (Wikipidia)

仿生與實驗室晶片導論

By Prof. Dr.-Ing. An-Bang Wang

- NTU-IAM

精微熱流控制實驗室

What are LOAC & μ -fluidics?

- There are different names used in the literature:
 μ-fluidic, MEMS-fluidics, LOAC, μ-TAS (TAS:
 Total Analysis Systems), BioMEMS, biochip,
 nanofluidics, nanoflows... etc.
- μ-fluidic is the study of flows, which are circulating in artificial μ-systems.
 (Prof. Patrick Tabeling)

(Prof. Patrick Tabeling

仿生與實驗室晶片導論

Edited By An-Bang Wang

精微熱流控制實驗室

Lecturers

- 臺大應用力學研究所、醫療器材與醫學影像 ◆王安邦
- 臺大電機工程學系教授、奈米機電系統研究 ◆林致廷
- 臺大奈米機電系統研究中心辦公室主任 ◆林順區
- 臺大生物產業機電工程學系助理教授
- 臺大電機工程學系生醫電資所副教授 ◆ 黄念祖
- ◆陳建甫 臺大應用力學研究所副教授
- ◆楊鏡堂 臺大機械系終身特聘教授
- ◆蘇剛毅 臺大醫學檢驗暨生物技術學系副教授

仿生與實驗室晶片導論

Edited By An-Bang Wang

精微熱流控制實驗室 -

Course Organization (II)

- 從大自然可以領略更多的靈感,所以本課程也將介紹 相關仿生案例,讓同學可以多體會大自然的奧秘、並 觸類旁通,以幫助實驗專題設計與執行。
- 課程設計上,這是一門結合「自然與工程」、「理論 與實作 | 和「研究與應用 | 六合一的實際動手參與, 以完成不同實驗專題的應用導向之工程與實作多樣學 習課程。
- 第5、10週將安排在臺大奈米機電系統研究中心無塵室 實習;第16週將安排在醫學院醫學檢驗暨生物技術學 系上課,並參觀臺大基因體中心。

Course Organization (I)

實驗室晶片(Lab-on-a-Chip)系統是將原本在實驗室 利用這種技術,醫生在幾分鐘的問診過程中可同時**快速** 診斷出病人的疾病,並對症下藥;生化實驗可以減少人 因干擾、避免人員直接曝露於有害試劑的危險工作;另 外,實驗室晶片因具有可自動化與平行化操作處理的特 色,所以可用於快速篩選或合成新藥與產品,並增加實 **驗的可信賴度**;而由於在晶片上僅需極少量的試劑且具 表面體積比增大之優點,更可**大幅減少試劑用量、減低** 操作成本及縮短操作處理時間。目前已有越來越多的實 驗改在實驗室晶片上進行,例如血液分離、電泳分離、 聚合脢鏈鎖反應(PCR)、核酸的定序反應分析等等, 而拋棄式的塑膠晶片也有漸成設計主流之趨勢

仿生與實驗室晶片導論

仿牛與實驗室晶片導論

Edited By An-Bang Wang

精微熱流控制實驗室 -

Course Organization (III)

- ◆ 在課程中,將讓同學到實驗室動手製做,讓同學們結 合不同專業組成跨領域團隊(每隊1-3人),以實際動手 完成不同的實驗專題,訓練同學們以目標為導向之團 隊合作與邏輯推理能力,同時開啟未來可能之研究方 向。
- ◆ Language: Chinese; lecture notes mainly in English
- ◆ Lecture Notes on Web: (http://bernoulli.iam.ntu.edu.tw)
- ◆ Grading Policy: Class participation (10%); 1st & 2nd Mid-term project presentation (15 + 15%); Final oral & written report of term project (30%+30%)

Why interdisciplinary?

仿牛與實驗室晶片導論

Edited By An-Bang Wang

精微熱流控制實驗室

Course Contents (II)

- 10. Lab course 實驗室晶片設計與實作(II): MEMS實作篇(B)
- 11. Design of micro-reactors and its application 微流體混合/反應暨生醫化材應用
- 12. Polymer-based microfluidic sensors 塑基微流體感測器
- 13. Paper-based microfluidic sensors 紙基微流體感測器
- 14. 2nd Mid-term project presentation 第二次期中討論與報告
- 15. Electronics-based bio-sensing technologies 生醫電子感測元件
- 16. 醫學分子檢驗新技術 (& Lab course)
- 17. Transport phenomena of droplets and lab-on-a chip 液珠輸送與檢測晶片
- 18. Final report 期末報告

NTU-IAM

仿生與實驗室晶片導論 Edited By An-Bang Wang

精微埶流控制實驗室

Course Contents (I)

- 1. Introduction to LOC仿生&實驗室晶片導論及議題設計介紹
- 2. Introduction to Biomimetics 仿牛學簡介 (I)
- 3. LOC & Term project assignment 實驗室晶片導論與實驗室晶片議題分配
- 4. 肝臟與肝臟晶片技術簡介、應用與未來展望
- 5. General fabrication techniques 微製程技術簡介 & 實作(I): MEMS實作篇(A)
- 6. Introduction to Biomimetics 仿牛學簡介 (II)
- 7. Microfluidics for bio-sample pretreatment 用於牛物樣本前處理之微流道系統
- 8. Introduction to Optofluidics 光流體系統簡介
- 9. 1st Mid-term project presentation & lab course 第一次期中報告與實驗室分組實作

仿牛與實驗室晶片導論 Edited By An-Bang Wang

精微熱流控制實驗室

Trend of the world

Edited By An-Bang Wang

NTU-IAM

仿生與實驗室晶片導論

精微埶流控制官驗室

Can the nature guide us the way of change?

Who can survive in the changing world?

- ◆ The one that is the strongest
- ◆ The one that is the most intelligent
- ◆ The one that is most active
- ◆ The one that works very hard
- ◆ The one that is most modern
- The one that is most rich

仿牛與實驗室晶片導論

Edited By An-Bang Wang

精微熱流控制實驗室

That's it?

- ◆ Another answer?
- ◆ Converging or diverging trend?
- Related effect: lower/higher entrance barrier?

https://evblog.virginiahumanities.org/2012/05/the-kkk-and-evolution-in-virginia

A Simple Answer

It is **not** the **strongest** of the species that survives, nor the **most intelligent** that survives.

It is the one that is the **most** adaptable to change.

Charles Darwin $(1809 \sim 1882)$

仿生與實驗室晶片導論

仿生與實驗室晶片導論

Edited By An-Bang Wang

"Adaptable to change"

- ♦ What can the "change" bring (for you)? Can you waive the "change"?
- ◆ "Change" vs. "Novelty" Keep changing from the same to be different
- ◆ What is/are the key parameter(s) of "adaptable to change"?

Learning from the nature (Biomimetic).

♦ What is/are the key(s) of "change" that related to us (students / professors)?

What is Microfluidic technology

- ◆ Fluidic: manipulating (or control) fluids
- ♦ Microfluidic = "Micro" + "Fluidic"

仿生與實驗室晶片導論

Edited By An-Bang Wang

NTU-IAM 精微熱流控制實驗室 -

Is it a microfluidic device?

1. Yes

2. No

Microfluidics is **not** so far from our life!

NTU-IAM -

Edited By An-Bang Wang 仿生與實驗室晶片導論

精微熱流控制實驗室 19

From Fluidic to Microfluidic technology

Prediction models for dripping drop sizes (I)

Prediction models for dripping drop sizes (II)

Yildirim, Xu & Basaran (2005)

(simulation:
$$We \le 10^{-6}$$
 & $Oh \le 1$) $We = \frac{16\rho Q^2}{\pi^2 \sigma D_{nozzle}^3}$ $Oh = \frac{\mu_d}{\sqrt{\rho \sigma D_{nozzle}}}$

$$d^* = 1.61 \left(D_{nozzle}^*\right)^{0.288}$$

仿生與實驗室晶片導論

Edited By An-Bang Wang

NTU-IAM P18 精微熱流控制實驗室 2

Prediction models for dripping drop sizes (III)

· All data can be well-predicted by a single parameter D_{w}^{*} in the whole range by $\dot{c} = 1.51 D_w^{*1/3} + 0.10$

By Prof. Dr.-Ing. An-Bang Wang 仿生與實驗室晶片導論

What should be the characteristic length D_{nozzle} ?

Tsai & Wang, Langmuir (2019), 35, 4763-4775.

仿生與實驗室晶片導論

Edited By An-Bang Wang

- NTU-IAM 精微熱流控制實驗室 -

How to precisely metering in biomedical lab?

Edited By An-Bang Wang

精微熱流控制實驗室

What is a microfluidic platform?

- It's a toolbox ...
 - containing a reduced number of building blocks
 - for a dedicated set of microfluidic operations
 - · that can easily be combined
 - within a well defined (low cost) fabrication technology
- The platform concept is not new ...
 - type setting in book printing ("Gutenberg bible")
 - computer industry
 - · automotive industry

(Zengerle & Haeberle)

Slide 25

Edited By An-Bang Wang

NTU-IAM

精微熱流控制實驗室

A Lab-on-a-chip system example

The Trend of Industry

The trend of industry development depends on the trend of human needs.

- · Providing Ubiquitous Total solution
- · Integration of functionality
- Built in precision/inspection/automation
- Reduce time to certification/ (mass) production /market /profit

(程一麟)

仿生與實驗室晶片導論

Edited By An-Bang Wang

Microfludic Platform @ AB WANG's Lab

仿生與實驗室晶片導論

Edited By An-Bang Wang

What are Fluids?

- Fluid is a substance tending to flow or conform to the outline of its container (Merriam-Webster's Collegiate Dictionary, Static aspect)
 Fluids are the substance that could not resist deformation, move and deform continuously under the application of a shear (tangential) stress, no matter how small the shear stress may be. (F. White, Dynamic aspect)
- · Fluids include
 - Liquid: a state of matter in which the molecules are relatively free to change the positions w.r.t. each other but restricted by cohesive forces so as to maintain a relatively fixed volume.
 - Gas: a state of matter in which the molecules are practically unrestricted of cohesive forces and has neither definite shape nor volume
- Some systems contain complex phenomena, like a group of solid that shows the ability to flow and polymers resist deformation etc.

sand as a liquid

rs resist deformation etc. www.chemistry.helsinki.fi
Polymers as frozen liquid

NTU-IAM

仿生與實驗室晶片導論

Edited By An-Bang Wang

精微熱流控制實驗室 -

Biological Fluids

Why liquids?

- ◆ About 70% of the Earth is covered with water, and 97% of that is the salty oceans.
- ◆ The human body is 72% saline (salt) water.
- ◆ A significant fraction of the human body is water. This body water is distributed in different compartments in the body. Lean muscle tissue contains about 75% water. Blood contains 83% water, body fat contains 25% water and bone has 22% water (Wikipedia).

仿生與實驗室晶片導論

Edited By An-Bang Wang

精微熱流控制實驗室 —

Issues in the biomedical applications

- ◆ Sample
- ◆ Contamination
- ◆ Accuracy
- **♦**SOP
- Automation
- ◆ Timing of Sequence
- ◆ Cost
- ◆ Space

仿生與實驗室晶片導論 Edited By An-Ban

· NTU-IAM

Edited By An-Bang Wang

Length scale & Volume scale

◆ Feeling is important

Why microfluidic technology?

Issues in Biomedical Industry:

- · Constant need of novelty and cost down
 - ⇒ New challenges in manufacturing technology

Reduce

overall

costs

Advantages of microfluidic technology:

- ♦ Short diffusion time $(t_D \propto L^2)$
- ◆ High Surface/Volume ratio (

 1/L)
 ⇒ better mass & heat transfer
- ◆ Less samples and fluid consumptions
- ◆ Short operation time
- ♦ Well-controlled micro-environment
 ⇒ Parallel operation ⇒ Easy scale up
- ◆ Automation & Portability

How big is a drop size from a eyedropper?

Microfluidic has been around for a long time?

Introduction to Surface Tension

Surface tension is the force applied along the interface of two immiscible fluids per unit length.

Surface tension is the tendency of liquid surfaces to shrink into the minimum surface area possible. (From Wikipedia)

Surface tension is the energy required to increase the interface of two immiscible fluids by an unit area.

http://www.liv.ac.uk/

仿生與實驗室晶片導論

Edited By An-Bang Wang

— NTU-IAM — 精微熱流控制實驗室

A experiment of Surface tension: Soap-film

- Circle has maximum surface for a given periphery
- Surface tension reduces surface energy to be minimum
- · Try to think about the liquid shape of different drop sizes

Surface Tension & Surface Energy

Surface tension: Force per unit length [N/m]

- The term "tension" is bad choice (Commonly referred to as force per **area**)
- · Microscopical Phenomenon relates to
- Energy required to transport molecule from bulk to surface region
- More physical definition of surface tension:

Surface Energy: Energy needed to extend surface

$$W = F_{\sigma} dx = 2 \sigma l dx$$

Systems always search to minimize Energy = minimize Surface/Interface (with highest Energy)

 (Ourrée and Zengerle)

仿生與實驗室晶片導論

Edited By An-Bang Wang

NTU-IAM -精微熱流控制實驗室

Surface tension vs. Pressure Soap-film Mechanics

NTU-IAM

Microfluidics related Journal Papers

Challenges & Strategy

Challenges:

- Proof-of-concept ≠ final product (Sackmann et al., 2014)
- Cool technology ≠ simple & cheap (Whitesides, 2013)
- · Long path from Lab and producer to the end users
- Resistance due to "inertia" of experienced users (especially) in biomedical field

Strategy:

仿生與實驗室晶片導論

- ◆ Papers (for academy)? or Patents (for users/money)?
- ◆ Pioneer? or Better performance?
- ◆ Innovation design? or New system integration?
- ◆ Specific component/System or General method/device?

Edited By An-Bang Wang

精微熱流控制實驗室

Annual granted microfluidic patents

References

- Lab-on-a-Chip, Miniaturized System for (Bio) Chemical Analysis and Synthesis,
 Oosterbroek and A. Van den Berg (Editor), Elsevier, 2003.
- 2. Introduction to microfluidics, Patrick Tabeling, Oxford University Press, 2005
- 3. Fundamentals and applications of microfluidics, Nam-Trung Nguyen, Steven T. Wereley, Artech House, 2006
- 4. Microfluidics for biotechnology, Jean Berthier, Pascal Silberzan, Artech House 2006
- 5. Microfludic, J. Ducree and R. Zengerle, Classnote of IMETK, Albert-Ludwigs-University Freiburg, Germany.
- 6. Process Engineering in Biotechnology, A.T. Jackson, Prentice-Hall Inc., 1991
- 7. Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices, Brian Kirby, Cambridge University Press, 2010
- Das grosse Buch der Bionik, Neue Technologien nach dem Vorbild der Natur, W. Nchtigall & K. Bluechel, DVA, 2000
- 9. Journal, conference papers, seminars and information from Webs.

仿生與實驗室晶片導論 Edited By An-Bang Wang NTU-IAM 特徵熱流控制實驗室 特徵熱流控制實驗室